Files
netris-cdc-file-transfer/common/threadpool_test.cc
Christian Schneider 4326e972ac Releasing the former Stadia file transfer tools
The tools allow efficient and fast synchronization of large directory
trees from a Windows workstation to a Linux target machine.

cdc_rsync* support efficient copy of files by using content-defined
chunking (CDC) to identify chunks within files that can be reused.

asset_stream_manager + cdc_fuse_fs support efficient streaming of a
local directory to a remote virtual file system based on FUSE. It also
employs CDC to identify and reuse unchanged data chunks.
2022-11-03 10:39:10 +01:00

156 lines
4.3 KiB
C++

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "common/threadpool.h"
#include <atomic>
#include <functional>
#include <unordered_set>
#include "common/semaphore.h"
#include "common/util.h"
#include "gtest/gtest.h"
namespace cdc_ft {
namespace {
// Wrapper class to make it possible to pass lambdas as task functions.
class TestTask : public Task {
public:
using TaskFunc = std::function<void(IsCancelledPredicate is_cancelled)>;
explicit TestTask(TaskFunc task_func) : task_func_(task_func) {}
virtual void ThreadRun(IsCancelledPredicate is_cancelled) {
task_func_(is_cancelled);
}
private:
TaskFunc task_func_;
};
class ThreadpoolTest : public ::testing::Test {};
TEST_F(ThreadpoolTest, WaitShutdownWorkWithoutTasks) {
Threadpool pool(3);
pool.Wait();
pool.Shutdown();
}
TEST_F(ThreadpoolTest, SingleThreadedRunsToCompletion) {
std::atomic_bool task_finished(false);
auto task_func = [&task_finished](Task::IsCancelledPredicate) {
task_finished = true;
};
Threadpool pool(1);
std::unique_ptr<Task> task_ptr = std::make_unique<TestTask>(task_func);
Task* task = task_ptr.get();
pool.QueueTask(std::move(task_ptr));
pool.Wait();
EXPECT_TRUE(task_finished);
std::unique_ptr<Task> completed_task = pool.TryGetCompletedTask();
EXPECT_EQ(completed_task.get(), task);
}
TEST_F(ThreadpoolTest, MultiThreadedRunsToCompletion) {
const int num_tasks = 19;
const int num_threads = 7;
std::atomic_int num_completed(0);
Threadpool pool(num_threads);
std::unordered_set<Task*> tasks;
for (int n = 0; n < num_tasks; ++n) {
auto task_func = [&num_completed](Task::IsCancelledPredicate) {
++num_completed;
};
auto task = std::make_unique<TestTask>(task_func);
tasks.insert(task.get());
pool.QueueTask(std::move(task));
}
pool.Wait();
EXPECT_EQ(num_completed, num_tasks);
for (int n = 0; n < num_tasks; ++n) {
std::unique_ptr<Task> completed_task = pool.TryGetCompletedTask();
EXPECT_TRUE(completed_task);
tasks.erase(completed_task.get());
}
EXPECT_FALSE(pool.TryGetCompletedTask());
EXPECT_TRUE(tasks.empty());
}
TEST_F(ThreadpoolTest, TaskIsCancelledOnShutdown) {
Semaphore task_started(0);
std::atomic_bool task_finished(false);
auto task_func = [&task_started,
&task_finished](Task::IsCancelledPredicate is_cancelled) {
task_started.Signal();
while (!is_cancelled()) {
Util::Sleep(0);
}
task_finished = true;
};
Threadpool pool(1);
pool.QueueTask(std::make_unique<TestTask>(task_func));
task_started.Wait();
pool.Shutdown();
EXPECT_TRUE(task_finished);
// The cancelled task should be discarded.
std::unique_ptr<Task> completed_task = pool.TryGetCompletedTask();
EXPECT_FALSE(completed_task.get());
}
TEST_F(ThreadpoolTest, SingleThreadedCompletesInFifoOrder) {
const int num_tasks = 10;
std::vector<int> completed_order;
Threadpool pool(1);
for (int n = 0; n < num_tasks; ++n) {
auto task_func = [n, &completed_order](Task::IsCancelledPredicate) {
// Thread-safe because there's only one worker thread.
completed_order.push_back(n);
};
pool.QueueTask(std::make_unique<TestTask>(task_func));
}
pool.Wait();
std::unique_ptr<Task> completed_task = pool.TryGetCompletedTask();
ASSERT_EQ(completed_order.size(), num_tasks);
for (int n = 0; n < num_tasks; ++n) {
EXPECT_EQ(completed_order[n], n);
}
}
TEST_F(ThreadpoolTest, GetCompletedTask) {
auto task_func = [](Task::IsCancelledPredicate) { Util::Sleep(10); };
Threadpool pool(1);
std::unique_ptr<Task> task_ptr = std::make_unique<TestTask>(task_func);
Task* task = task_ptr.get();
pool.QueueTask(std::move(task_ptr));
// Note: No pool.Wait().
std::unique_ptr<Task> completed_task = pool.GetCompletedTask();
EXPECT_EQ(completed_task.get(), task);
}
} // namespace
} // namespace cdc_ft