Compare commits

...

4 Commits

6 changed files with 1111 additions and 81 deletions

View File

@@ -1,7 +1,90 @@
# deyeChargeSpeed
# Deye Charge Speed Monitor
https://github.com/jmccrohan/pysolarmanv5
A Flask-based application for monitoring Deye Inverters (and compatible models) using the Solarman V5 protocol. This tool connects directly to the inverter via Modbus over TCP to read real-time data including voltages, currents, battery status, and BMS information.
https://pysolarmanv5.readthedocs.io/en/stable/
## Features
https://pysolarmanv5.readthedocs.io/en/stable/examples.html
- **Real-time Monitoring**: Reads critical data such as Input/Output Voltage, Grid/Load Currents, Battery SOC, Temperature, and Power.
- **BMS Integration**: Retrieves detailed Battery Management System (BMS) data for up to two battery packs.
- **Web Interface**: Provides a user-friendly dashboard to view inverter status (served at `/`).
- **JSON API**: Exposes raw data via a RESTful endpoint (`/api/data`) for integration with other systems.
- **PDF Utility**: Includes a tool to extract register information from Deye Modbus PDF manuals.
## Prerequisites
- Python 3.x
- A Deye Inverter (or compatible) connected to the network.
- Inverter IP address, Serial Number, and Modbus Slave ID.
## Installation
1. **Clone the repository:**
```bash
git clone <repository-url>
cd deyeChargeSpeed
```
2. **Create and activate a virtual environment:**
```bash
python -m venv venv
# Windows
.\venv\Scripts\activate
# Linux/Mac
source venv/bin/activate
```
3. **Install dependencies:**
```bash
pip install -r requirements.txt
```
4. **Configuration:**
Copy the example configuration file and update it with your inverter details:
```bash
cp config.py.example config.py
```
Edit `config.py`:
```python
INVERTER_IP = "192.168.x.x"
INVERTER_SERIAL = 1234567890
INVERTER_PORT = 8899
INVERTER_SLAVE_ID = 1
```
## Usage
1. **Start the application:**
```bash
python app.py
```
2. **Access the dashboard:**
Open your web browser and navigate to `http://localhost:5000`.
## Utilities
### PDF Register Extractor
Located in `docs/extract_pdf.py`, this script helps identify Modbus registers from Deye PDF manuals.
**Usage:**
1. Place your PDF manual in the `docs/` folder.
2. Update the filename in `docs/extract_pdf.py` if necessary (defaults to `Modbus储能-组串-微逆宁波德业V118-1.pdf`).
3. Run the script:
```bash
python docs/extract_pdf.py
```
4. Check `pdf_output.txt` for the extracted register locations and context.
## Resources
- [PySolarmanV5 Documentation](https://pysolarmanv5.readthedocs.io/en/stable/)
- [PySolarmanV5 GitHub](https://github.com/jmccrohan/pysolarmanv5)

92
app.py
View File

@@ -18,34 +18,84 @@ def get_inverter_data():
verbose=False
)
# Registers to read:
# 150: Grid Voltage (Input Voltage) - 0.1V
# 154: Output Voltage - 0.1V
# 157: Load Voltage - 0.1V
# Reading blocks:
# Block 1: 150 - 216 (67 registers) - Voltages, Currents, Battery, PV, Control
# Block 2: 600 - 627 (28 registers) - BMS Data
# Block 3: 245 (1 register) - Max Grid Output
# Block 4: 292 - 293 (2 registers) - Peak Shaving
# Block 5: 314 - 325 (12 registers) - Advanced Limits
# Reading individually for simplicity, though block read is more efficient if contiguous
# But these are slightly apart (150, 154, 157).
# We can read a block from 150 to 157 (8 registers) and parse.
block1 = inverter.read_holding_registers(register_addr=150, quantity=67)
block2 = inverter.read_holding_registers(register_addr=600, quantity=28)
block3 = inverter.read_holding_registers(register_addr=245, quantity=1)
block4 = inverter.read_holding_registers(register_addr=292, quantity=2)
block5 = inverter.read_holding_registers(register_addr=314, quantity=12)
# Let's read block starting at 150, length 8.
# 150 -> Index 0
# 154 -> Index 4
# 157 -> Index 7
def to_signed(val):
return val if val < 32768 else val - 65536
data = {}
raw_data = inverter.read_holding_registers(register_addr=150, quantity=8)
# Block 1 Parsing (150-216)
data["input_voltage"] = round(block1[0] * 0.1, 1) # 150
data["output_voltage"] = round(block1[4] * 0.1, 1) # 154
data["load_voltage"] = round(block1[7] * 0.1, 1) # 157
input_voltage = raw_data[0] * 0.1
output_voltage = raw_data[4] * 0.1
load_voltage = raw_data[7] * 0.1
data["grid_current"] = round(to_signed(block1[10]) * 0.01, 2) # 160
data["grid_clamp_current"] = round(to_signed(block1[12]) * 0.01, 2) # 162
data["output_current"] = round(to_signed(block1[14]) * 0.01, 2) # 164
data["load_current"] = round(to_signed(block1[29]) * 0.01, 2) # 179
data["batt_temp"] = round(to_signed(block1[32]) * 0.1, 1) # 182
data["batt_voltage"] = round(block1[33] * 0.01, 2) # 183
data["batt_soc"] = block1[34] # 184
data["batt_charge_status"] = block1[35] # 185
data["pv1_power"] = block1[36] # 186
data["pv2_power"] = block1[37] # 187
data["batt_power"] = to_signed(block1[40]) # 190
data["batt_current"] = round(to_signed(block1[41]) * 0.01, 2) # 191
data["grid_relay_status"] = block1[44] # 194
data["gen_relay_status"] = block1[45] # 195
data["max_charge_current"] = block1[60] # 210
data["max_discharge_current"] = block1[61] # 211
data["batt_charge_efficiency"] = block1[66] # 216
# Block 2 Parsing (BMS 600-627)
data["bms1_soc"] = block2[3] # 603
data["bms1_charge_voltage"] = round(block2[6] * 0.01, 2) # 606
data["bms1_charge_current"] = round(block2[7] * 0.1, 1) # 607
data["bms2_soc"] = block2[17] # 617
data["bms2_charge_voltage"] = round(block2[20] * 0.01, 2) # 620
data["bms2_charge_current"] = round(block2[21] * 0.1, 1) # 621
# Block 3 Parsing (245)
data["max_grid_output_power"] = block3[0] # 245
# Block 4 Parsing (292-293)
data["gen_peak_shaving_power"] = block4[0] # 292
data["grid_peak_shaving_power"] = block4[1] # 293
# Block 5 Parsing (314-325)
data["discharge_voltage"] = round(block5[0] * 0.01, 2) # 314
data["charge_current_limit"] = block5[1] # 315
data["discharge_current_limit"] = block5[2] # 316
data["real_time_capacity"] = block5[3] # 317
data["real_time_voltage"] = round(block5[4] * 0.01, 2) # 318
# 319 skipped
data["max_charge_current_limit"] = block5[6] # 320
data["max_discharge_current_limit"] = block5[7] # 321
# 322-324 skipped
data["lithium_battery_type"] = block5[11] # 325
inverter.disconnect()
return {
"input_voltage": round(input_voltage, 1),
"output_voltage": round(output_voltage, 1),
"load_voltage": round(load_voltage, 1),
"status": "success"
}
data["status"] = "success"
return data
except Exception as e:
return {

39
docs/extract_pdf.py Normal file
View File

@@ -0,0 +1,39 @@
import os
import pypdf
import re
pdf_path = os.path.join(os.path.dirname(__file__), "Modbus储能-组串-微逆宁波德业V118-1.pdf")
def extract_text_from_pdf(pdf_path):
reader = pypdf.PdfReader(pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text() + "\n"
return text
full_text = extract_text_from_pdf(pdf_path)
# Registers to look for
registers = [94, 245, 320]
print("Searching for registers...")
# Split text into lines for easier processing
lines = full_text.split('\n')
found_registers = {}
with open("pdf_output.txt", "w", encoding="utf-8") as f:
for i, line in enumerate(lines):
for reg in registers:
if re.search(r'\b' + str(reg) + r'\b', line):
f.write(f"MATCH {reg}: {line.strip()}\n")
# Write context
start = max(0, i - 5)
end = min(len(lines), i + 6)
for j in range(start, end):
if i != j:
f.write(f" CTX: {lines[j].strip()}\n")
f.write("-" * 20 + "\n")
print("Done. Check pdf_output.txt")

View File

@@ -1,5 +1,6 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
@@ -17,47 +18,6 @@
body {
background-color: var(--bg-color);
color: var(--text-color);
font-family: var(--font-family);
margin: 0;
padding: 20px;
display: flex;
flex-direction: column;
align-items: center;
min-height: 100vh;
}
h1 {
margin-bottom: 40px;
font-weight: 300;
letter-spacing: 2px;
text-transform: uppercase;
background: linear-gradient(45deg, var(--accent-color), var(--secondary-accent));
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.dashboard {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 20px;
width: 100%;
max-width: 1000px;
}
.card {
background-color: var(--card-bg);
border-radius: 15px;
padding: 25px;
text-align: center;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.3);
transition: transform 0.3s ease, box-shadow 0.3s ease;
position: relative;
overflow: hidden;
}
.card:hover {
transform: translateY(-5px);
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.4);
}
.card::before {
@@ -118,19 +78,35 @@
}
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
0% {
opacity: 1;
}
50% {
opacity: 0.5;
}
100% {
opacity: 1;
}
}
.loading .value {
animation: pulse 1.5s infinite;
color: #666;
}
.dashboard {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 20px;
width: 100%;
max-width: 1000px;
}
</style>
</head>
<body>
<body>
<h1>Deye Inverter Monitor</h1>
<div class="dashboard">
@@ -154,17 +130,370 @@
<span class="value" id="load-voltage">--</span><span class="unit">V</span>
</div>
</div>
<div class="card" id="card-grid-current">
<h2>Grid Current</h2>
<div class="value-container loading">
<span class="value" id="grid-current">--</span><span class="unit">A</span>
</div>
</div>
<div class="card" id="card-clamp-current">
<h2>Grid Clamp Current</h2>
<div class="value-container loading">
<span class="value" id="grid-clamp-current">--</span><span class="unit">A</span>
</div>
</div>
<div class="card" id="card-output-current">
<h2>Output Current</h2>
<div class="value-container loading">
<span class="value" id="output-current">--</span><span class="unit">A</span>
</div>
</div>
</div>
<h2>Battery & PV</h2>
<div class="dashboard">
<div class="card">
<h2>Battery SOC</h2>
<div class="value-container loading">
<span class="value" id="batt-soc">--</span><span class="unit">%</span>
</div>
</div>
<div class="card">
<h2>Battery Voltage</h2>
<div class="value-container loading">
<span class="value" id="batt-voltage">--</span><span class="unit">V</span>
</div>
</div>
<div class="card">
<h2>Battery Current</h2>
<div class="value-container loading">
<span class="value" id="batt-current">--</span><span class="unit">A</span>
</div>
</div>
<div class="card">
<h2>Battery Power</h2>
<div class="value-container loading">
<span class="value" id="batt-power">--</span><span class="unit">W</span>
</div>
</div>
<div class="card">
<h2>Battery Temp</h2>
<div class="value-container loading">
<span class="value" id="batt-temp">--</span><span class="unit">°C</span>
</div>
</div>
<div class="card">
<h2>PV1 Power</h2>
<div class="value-container loading">
<span class="value" id="pv1-power">--</span><span class="unit">W</span>
</div>
</div>
<div class="card">
<h2>PV2 Power</h2>
<div class="value-container loading">
<span class="value" id="pv2-power">--</span><span class="unit">W</span>
</div>
</div>
</div>
<h2>Control Status</h2>
<div class="dashboard">
<div class="card">
<h2>Grid Relay</h2>
<div class="value-container loading">
<span class="value" id="grid-relay">--</span>
</div>
</div>
<div class="card">
<h2>Gen Relay</h2>
<div class="value-container loading">
<span class="value" id="gen-relay">--</span>
</div>
</div>
<div class="card">
<h2>Max Charge I</h2>
<div class="value-container loading">
<span class="value" id="max-charge">--</span><span class="unit">A</span>
</div>
</div>
<div class="card">
<h2>Max Discharge I</h2>
<div class="value-container loading">
<span class="value" id="max-discharge">--</span><span class="unit">A</span>
</div>
</div>
</div>
<h2>BMS Data</h2>
<div class="dashboard">
<div class="card">
<h2>BMS1 SOC</h2>
<div class="value-container loading">
<span class="value" id="bms1-soc">--</span><span class="unit">%</span>
</div>
</div>
<div class="card">
<h2>BMS1 Voltage</h2>
<div class="value-container loading">
<span class="value" id="bms1-voltage">--</span><span class="unit">V</span>
</div>
</div>
<div class="card">
<h2>BMS1 Current</h2>
<div class="value-container loading">
<span class="value" id="bms1-current">--</span><span class="unit">A</span>
</div>
</div>
<div class="card">
<h2>BMS2 SOC</h2>
<div class="value-container loading">
<span class="value" id="bms2-soc">--</span><span class="unit">%</span>
</div>
</div>
<div class="card">
<h2>BMS2 Voltage</h2>
<div class="value-container loading">
<span class="value" id="bms2-voltage">--</span><span class="unit">V</span>
</div>
</div>
<div class="card">
<h2>BMS2 Current</h2>
<div class="value-container loading">
<span class="value" id="bms2-current">--</span><span class="unit">A</span>
</div>
</div>
</div>
<h2>Advanced Control & Limits</h2>
<div class="dashboard">
<div class="card">
<h2>Max Grid Output</h2>
<div class="value-container loading">
<span class="value" id="max-grid-output">--</span><span class="unit">W</span>
</div>
</div>
<div class="card">
<h2>Gen Peak Shaving</h2>
<div class="value-container loading">
<span class="value" id="gen-peak-shaving">--</span><span class="unit">W</span>
</div>
</div>
<div class="card">
<h2>Grid Peak Shaving</h2>
<div class="value-container loading">
<span class="value" id="grid-peak-shaving">--</span><span class="unit">W</span>
</div>
</div>
<div class="card">
<h2>Discharge Voltage</h2>
<div class="value-container loading">
<span class="value" id="discharge-voltage">--</span><span class="unit">V</span>
</div>
</div>
<div class="card">
<h2>Charge I Limit</h2>
<div class="value-container loading">
<span class="value" id="charge-i-limit">--</span><span class="unit">A</span>
</div>
</div>
<div class="card">
<h2>Discharge I Limit</h2>
<div class="value-container loading">
<span class="value" id="discharge-i-limit">--</span><span class="unit">A</span>
</div>
</div>
<div class="card">
<h2>Real Time Cap</h2>
<div class="value-container loading">
<span class="value" id="real-time-cap">--</span><span class="unit">%</span>
</div>
</div>
<div class="card">
<h2>Real Time Voltage</h2>
<div class="value-container loading">
<span class="value" id="real-time-voltage">--</span><span class="unit">V</span>
</div>
</div>
<div class="card">
<h2>Max Charge I Limit</h2>
<div class="value-container loading">
<span class="value" id="max-charge-i-limit">--</span><span class="unit">A</span>
</div>
</div>
<div class="card">
<h2>Max Discharge I Limit</h2>
<div class="value-container loading">
<span class="value" id="max-discharge-i-limit">--</span><span class="unit">A</span>
</div>
</div>
<div class="card">
<h2>Lithium Type</h2>
<div class="value-container loading">
<span class="value" id="lithium-type">--</span>
</div>
</div>
</div>
<div class="status-bar">
<span class="status-indicator" id="status-dot"></span>
<span id="status-text">Connecting...</span>
<div class="card">
<h2>Battery SOC</h2>
<div class="value-container loading"><span class="value" id="batt-soc">--</span><span class="unit">%</span>
</div>
</div>
<div class="card">
<h2>Battery Voltage</h2>
<div class="value-container loading"><span class="value" id="batt-voltage">--</span><span
class="unit">V</span></div>
</div>
<div class="card">
<h2>Battery Current</h2>
<div class="value-container loading"><span class="value" id="batt-current">--</span><span
class="unit">A</span></div>
</div>
<div class="card">
<h2>Battery Power</h2>
<div class="value-container loading"><span class="value" id="batt-power">--</span><span
class="unit">W</span></div>
</div>
<div class="card">
<h2>Battery Temp</h2>
<div class="value-container loading"><span class="value" id="batt-temp">--</span><span
class="unit">°C</span></div>
</div>
<div class="card">
<h2>PV1 Power</h2>
<div class="value-container loading"><span class="value" id="pv1-power">--</span><span class="unit">W</span>
</div>
</div>
<div class="card">
<h2>PV2 Power</h2>
<div class="value-container loading"><span class="value" id="pv2-power">--</span><span class="unit">W</span>
</div>
</div>
</div>
<script>
const inputVoltageEl = document.getElementById('input-voltage');
<h2>Control Status</h2>
<div class="dashboard">
<div class="card">
<h2>Grid Relay</h2>
<div class="value-container loading"><span class="value" id="grid-relay">--</span></div>
</div>
<div class="card">
<h2>Gen Relay</h2>
<div class="value-container loading"><span class="value" id="gen-relay">--</span></div>
</div>
<div class="card">
<h2>Max Charge I</h2>
<div class="value-container loading"><span class="value" id="max-charge">--</span><span
class="unit">A</span></div>
</div>
<div class="card">
<h2>Max Discharge I</h2>
<div class="value-container loading"><span class="value" id="max-discharge">--</span><span
class="unit">A</span></div>
</div>
</div>
<h2>BMS Data</h2>
<div class="dashboard">
<div class="card">
<h2>BMS1 SOC</h2>
<div class="value-container loading"><span class="value" id="bms1-soc">--</span><span class="unit">%</span>
</div>
</div>
<div class="card">
<h2>BMS1 Voltage</h2>
<div class="value-container loading"><span class="value" id="bms1-voltage">--</span><span
class="unit">V</span></div>
</div>
<div class="card">
<h2>BMS1 Current</h2>
<div class="value-container loading"><span class="value" id="bms1-current">--</span><span
class="unit">A</span></div>
</div>
<div class="card">
<h2>BMS2 SOC</h2>
<div class="value-container loading"><span class="value" id="bms2-soc">--</span><span class="unit">%</span>
</div>
</div>
<div class="card">
<h2>BMS2 Voltage</h2>
<div class="value-container loading"><span class="value" id="bms2-voltage">--</span><span
class="unit">V</span></div>
</div>
<div class="card">
<h2>BMS2 Current</h2>
<div class="value-container loading"><span class="value" id="bms2-current">--</span><span
class="unit">A</span></div>
</div>
</div>
<h2>Advanced Control & Limits</h2>
<div class="dashboard">
<div class="card">
<h2>Max Grid Output</h2>
<div class="value-container loading"><span class="value" id="max-grid-output">--</span><span
class="unit">W</span></div>
</div>
<div class="card">
<h2>Gen Peak Shaving</h2>
<div class="value-container loading"><span class="value" id="gen-peak-shaving">--</span><span
class="unit">W</span></div>
</div>
<div class="card">
<h2>Grid Peak Shaving</h2>
<div class="value-container loading"><span class="value" id="grid-peak-shaving">--</span><span
class="unit">W</span></div>
</div>
<div class="card">
<h2>Discharge Voltage</h2>
<div class="value-container loading"><span class="value" id="discharge-voltage">--</span><span
class="unit">V</span></div>
</div>
<div class="card">
<h2>Charge I Limit</h2>
<div class="value-container loading"><span class="value" id="charge-i-limit">--</span><span
class="unit">A</span></div>
</div>
<div class="card">
<h2>Discharge I Limit</h2>
<div class="value-container loading"><span class="value" id="discharge-i-limit">--</span><span
class="unit">A</span></div>
</div>
<div class="card">
<h2>Real Time Cap</h2>
<div class="value-container loading"><span class="value" id="real-time-cap">--</span><span
class="unit">%</span></div>
</div>
<div class="card">
<h2>Real Time Voltage</h2>
<div class="value-container loading"><span class="value" id="real-time-voltage">--</span><span
class="unit">V</span></div>
</div>
<div class="card">
<h2>Max Charge I Limit</h2>
<div class="value-container loading"><span class="value" id="max-charge-i-limit">--</span><span
class="unit">A</span></div>
</div>
<div class="card">
<h2>Max Discharge I Limit</h2>
<div class="value-container loading"><span class="value" id="max-discharge-i-limit">--</span><span
class="unit">A</span></div>
</div>
<div class="card">
<h2>Lithium Type</h2>
<div class="value-container loading"><span class="value" id="lithium-type">--</span></div>
</div>
</div>
<div class="status-bar"><span class="status-indicator" id="status-dot"></span><span
id="status-text">Connecting...</span></div>
<script>const inputVoltageEl = document.getElementById('input-voltage');
const outputVoltageEl = document.getElementById('output-voltage');
const loadVoltageEl = document.getElementById('load-voltage');
const gridCurrentEl = document.getElementById('grid-current');
const gridClampCurrentEl = document.getElementById('grid-clamp-current');
const outputCurrentEl = document.getElementById('output-current');
const statusDot = document.getElementById('status-dot');
const statusText = document.getElementById('status-text');
const valueContainers = document.querySelectorAll('.value-container');
@@ -175,23 +504,65 @@
const data = await response.json();
if (data.status === 'success') {
// Basic
inputVoltageEl.textContent = data.input_voltage;
outputVoltageEl.textContent = data.output_voltage;
loadVoltageEl.textContent = data.load_voltage;
gridCurrentEl.textContent = data.grid_current;
gridClampCurrentEl.textContent = data.grid_clamp_current;
outputCurrentEl.textContent = data.output_current;
// Battery & PV
document.getElementById('batt-soc').textContent = data.batt_soc;
document.getElementById('batt-voltage').textContent = data.batt_voltage;
document.getElementById('batt-current').textContent = data.batt_current;
document.getElementById('batt-power').textContent = data.batt_power;
document.getElementById('batt-temp').textContent = data.batt_temp;
document.getElementById('pv1-power').textContent = data.pv1_power;
document.getElementById('pv2-power').textContent = data.pv2_power;
// Control Status
document.getElementById('grid-relay').textContent = data.grid_relay_status;
document.getElementById('gen-relay').textContent = data.gen_relay_status;
document.getElementById('max-charge').textContent = data.max_charge_current;
document.getElementById('max-discharge').textContent = data.max_discharge_current;
// BMS Data
document.getElementById('bms1-soc').textContent = data.bms1_soc;
document.getElementById('bms1-voltage').textContent = data.bms1_charge_voltage;
document.getElementById('bms1-current').textContent = data.bms1_charge_current;
document.getElementById('bms2-soc').textContent = data.bms2_soc;
document.getElementById('bms2-voltage').textContent = data.bms2_charge_voltage;
document.getElementById('bms2-current').textContent = data.bms2_charge_current;
// Advanced Control
document.getElementById('max-grid-output').textContent = data.max_grid_output_power;
document.getElementById('gen-peak-shaving').textContent = data.gen_peak_shaving_power;
document.getElementById('grid-peak-shaving').textContent = data.grid_peak_shaving_power;
document.getElementById('discharge-voltage').textContent = data.discharge_voltage;
document.getElementById('charge-i-limit').textContent = data.charge_current_limit;
document.getElementById('discharge-i-limit').textContent = data.discharge_current_limit;
document.getElementById('real-time-cap').textContent = data.real_time_capacity;
document.getElementById('real-time-voltage').textContent = data.real_time_voltage;
document.getElementById('max-charge-i-limit').textContent = data.max_charge_current_limit;
document.getElementById('max-discharge-i-limit').textContent = data.max_discharge_current_limit;
document.getElementById('lithium-type').textContent = data.lithium_battery_type;
statusDot.className = 'status-indicator active';
statusText.textContent = 'Connected';
valueContainers.forEach(el => el.classList.remove('loading'));
} else {
}
else {
throw new Error(data.message || 'Unknown error');
}
} catch (error) {
}
catch (error) {
console.error('Error fetching data:', error);
statusDot.className = 'status-indicator error';
statusText.textContent = 'Error: ' + error.message;
// Don't reset values to '--' immediately to avoid flickering if it's just a transient network blip,
// but maybe indicate stale data if needed. For now, keep last known values.
}
}
@@ -200,4 +571,5 @@
setInterval(fetchData, 5000);
</script>
</body>
</html>
</html>

486
test/read_registers.py Normal file
View File

@@ -0,0 +1,486 @@
"""
Script to read and write holding registers from a Solarman inverter using the pysolarmanv5 library.
Usage:
Read registers: python read_registers.py
Write to register 230: python read_registers.py --write 230 75
Write to register 293: python read_registers.py --write 293 5000
Write to multiple registers: python read_registers.py --write 230 75 --write 293 5000
Writable registers:
- Register 230: range 0-115
- Register 293: range 0-6500
"""
import sys
import os
import argparse
import ipaddress
# Import required libraries with error handling
try:
from pysolarmanv5 import PySolarmanV5
from pysolarmanv5.pysolarmanv5 import V5FrameError
import umodbus.exceptions
except ImportError as e:
print(f"ERROR: Required library not installed: {e}")
print("Install required libraries with: pip install pysolarmanv5 umodbus")
sys.exit(1)
# Helper functions for validated configuration
def get_env_int(name, default, min_val=None, max_val=None):
"""
Get integer from environment variable with validation.
Args:
name: Environment variable name
default: Default value if not set or invalid
min_val: Minimum allowed value (optional)
max_val: Maximum allowed value (optional)
Returns:
int: Validated integer value
"""
value_str = os.getenv(name)
if value_str is None:
return default
try:
value = int(value_str)
if min_val is not None and value < min_val:
print(f"WARNING: {name}={value} is below minimum ({min_val}). Using default: {default}")
return default
if max_val is not None and value > max_val:
print(f"WARNING: {name}={value} exceeds maximum ({max_val}). Using default: {default}")
return default
return value
except ValueError:
print(f"WARNING: Invalid {name}='{value_str}' (must be an integer). Using default: {default}")
return default
def get_env_ip(name, default):
"""
Get IP address from environment variable with validation.
Args:
name: Environment variable name
default: Default IP address
Returns:
str: Validated IP address
"""
value = os.getenv(name)
if value is None:
return default
try:
# Validate IP address format
ipaddress.ip_address(value)
return value
except ValueError:
print(f"WARNING: Invalid IP address in {name}='{value}'. Using default: {default}")
return default
# Configuration - Can be overridden with environment variables
INVERTER_IP = get_env_ip("INVERTER_IP", "192.168.0.203")
INVERTER_SERIAL = get_env_int("INVERTER_SERIAL", 2722455016, min_val=0, max_val=4294967295)
INVERTER_PORT = get_env_int("INVERTER_PORT", 8899, min_val=1, max_val=65535)
MODBUS_SLAVE_ID = get_env_int("MODBUS_SLAVE_ID", 1, min_val=0, max_val=247)
SOCKET_TIMEOUT = get_env_int("SOCKET_TIMEOUT", 5, min_val=1, max_val=60)
# Registers to read
REGISTERS = [227, 230, 292, 293]
# Writable registers whitelist with validation ranges
# Format: {register_number: (min_value, max_value)}
WRITABLE_REGISTERS = {
230: (0, 115), # Register 230: valid range 0-115
293: (0, 6500), # Register 293: valid range 0-6500
}
def validate_writable_registers():
"""Validate WRITABLE_REGISTERS configuration at startup."""
if not WRITABLE_REGISTERS:
raise ValueError("WRITABLE_REGISTERS cannot be empty. At least one register must be configured.")
for reg, (min_val, max_val) in WRITABLE_REGISTERS.items():
if not isinstance(reg, int) or reg < 0 or reg > 65535:
raise ValueError(f"Invalid register address: {reg}. Must be 0-65535.")
if not isinstance(min_val, int) or not isinstance(max_val, int):
raise ValueError(f"Register {reg} range values must be integers")
if min_val > max_val:
raise ValueError(f"Invalid range for register {reg}: min ({min_val}) > max ({max_val})")
if min_val < 0 or max_val > 65535:
raise ValueError(f"Register {reg} range [{min_val}, {max_val}] outside valid Modbus range [0, 65535]")
def validate_registers():
"""Validate REGISTERS configuration at startup."""
if not isinstance(REGISTERS, list):
raise ValueError("REGISTERS must be a list")
seen = set()
for reg in REGISTERS:
if not isinstance(reg, int):
raise ValueError(f"Invalid register address: {reg}. Must be an integer.")
if reg < 0 or reg > 65535:
raise ValueError(f"Invalid register address: {reg}. Must be 0-65535.")
if reg in seen:
raise ValueError(f"Duplicate register address: {reg}")
seen.add(reg)
# Validate configuration on module load
try:
validate_writable_registers()
validate_registers()
except ValueError as e:
print(f"ERROR: Configuration validation failed: {e}")
print("Please check WRITABLE_REGISTERS and REGISTERS configuration.")
sys.exit(1)
def validate_register_arg(value_str):
"""
Validate register address from command line.
Args:
value_str: String value from command line
Returns:
int: Validated register address
Raises:
ValueError: If value is invalid
"""
try:
int_val = int(value_str)
if int_val < 0 or int_val > 65535:
raise ValueError(f"Register address must be 0-65535, got {int_val}")
return int_val
except ValueError as e:
if "invalid literal" in str(e):
raise ValueError(f"Invalid integer: {value_str}")
raise
def validate_value_arg(value_str):
"""
Validate register value from command line.
Args:
value_str: String value from command line
Returns:
int: Validated register value
Raises:
ValueError: If value is invalid
"""
try:
int_val = int(value_str)
if int_val < 0 or int_val > 65535:
raise ValueError(f"Register value must be 0-65535, got {int_val}")
return int_val
except ValueError as e:
if "invalid literal" in str(e):
raise ValueError(f"Invalid integer: {value_str}")
raise
def validate_write_operations(write_operations):
"""
Validate all write operations before connecting to device.
Args:
write_operations: List of (register_addr, value) tuples
Returns:
bool: True if all operations are valid
Raises:
SystemExit: If any validation fails
"""
if not write_operations:
return True
print("Validating write operations...")
for register_addr, value in write_operations:
# Check if register is in the whitelist
if register_addr not in WRITABLE_REGISTERS:
print(f"\nERROR: Register {register_addr} is not in the writable registers whitelist")
print(f"Allowed registers: {list(WRITABLE_REGISTERS.keys())}")
sys.exit(1)
# Validate value is not negative
if value < 0:
print(f"\nERROR: Negative values not allowed. Got: {value}")
sys.exit(1)
# Validate value fits in Modbus register
if value > 65535:
print(f"\nERROR: Value {value} exceeds maximum Modbus register value (65535)")
sys.exit(1)
# Validate value range for this specific register
min_val, max_val = WRITABLE_REGISTERS[register_addr]
if not min_val <= value <= max_val:
print(f"\nERROR: Value {value} out of range for register {register_addr}")
print(f"Valid range: {min_val} to {max_val}")
sys.exit(1)
print("All write operations validated.\n")
return True
def write_register(modbus, register_addr, value):
"""
Write a value to a holding register.
Note: This function assumes the register address and value have already been
validated by validate_write_operations() before calling.
Args:
modbus: PySolarmanV5 instance
register_addr: Register address to write to (must be pre-validated)
value: Integer value to write (must be pre-validated)
Returns:
bool: True if write succeeded, False otherwise
"""
try:
print(f"\nWriting value {value} to register {register_addr}...")
# Read current value first
print("Reading current value...")
current = modbus.read_holding_registers(register_addr=register_addr, quantity=1)
# Check for empty response
if not current or len(current) == 0:
print("ERROR: Failed to read current value (empty response)")
return False
print(f"Current value: {current[0]}")
try:
result = modbus.write_multiple_holding_registers(register_addr, [value])
print(f"Write command sent (method: multi)({result})")
except V5FrameError as e:
print(f"V5FrameError: {e}")
return False
except umodbus.exceptions.ModbusError as e:
print(f"Modbus protocol error: {e}")
return False
# Verify the write succeeded
print("Verifying write...")
try:
updated = modbus.read_holding_registers(register_addr=register_addr, quantity=1)
# Check for empty response
if not updated or len(updated) == 0:
print("ERROR: Failed to verify write (empty response)")
return False
updated_value = updated[0]
if updated_value == value:
print(f"SUCCESS: Register {register_addr} = {updated_value}")
return True
else:
print(f"WARNING: Expected {value}, but register {register_addr} = {updated_value}")
print("Note: Value may have been modified by device or another client")
return False
except TimeoutError:
print(f"ERROR: Timeout reading back register {register_addr}")
return False
except Exception as e:
print(f"ERROR writing to register {register_addr}: {type(e).__name__}: {e}")
return False
def read_and_display_registers(modbus):
"""
Read and display the configured registers.
Args:
modbus: PySolarmanV5 instance
"""
try:
# Check if REGISTERS list is empty
if not REGISTERS:
print("WARNING: No registers configured to read")
return
# Read and display each register
print("Reading holding registers:")
print("-" * 50)
for register_addr in REGISTERS:
try:
# Read single register
result = modbus.read_holding_registers(
register_addr=register_addr,
quantity=1
)
# Check for empty response
if not result or len(result) == 0:
print(f"Register {register_addr:>3}: Error - empty response")
continue
# Extract value (result is a list)
value = result[0]
# Display the register and its value
print(f"Register {register_addr:>3}: {value:>5} (0x{value:04X})")
except (V5FrameError, umodbus.exceptions.IllegalDataAddressError) as e:
print(f"Register {register_addr:>3}: Error reading - {e}")
except Exception as e:
print(f"Register {register_addr:>3}: Unexpected error - {e}")
print("-" * 50)
print("\nRead complete!")
except Exception as e:
print(f"\nError reading registers: {e}")
def main():
"""Main function to parse arguments and execute operations."""
# Parse command line arguments
parser = argparse.ArgumentParser(
description="Read and write Solarman inverter holding registers",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=f"""
Examples:
Read registers: python read_registers.py
Write to register 230: python read_registers.py --write 230 75
Write to register 293: python read_registers.py --write 293 5000
Write to multiple registers: python read_registers.py --write 230 75 --write 293 5000
Enable verbose output: python read_registers.py --verbose
Writable registers and their valid ranges:
{chr(10).join(f' Register {reg}: {min_val}-{max_val}' for reg, (min_val, max_val) in WRITABLE_REGISTERS.items())}
Environment Variables:
INVERTER_IP - IP address of Solarman data logger (default: {INVERTER_IP})
INVERTER_SERIAL - Serial number of data logger (default: {INVERTER_SERIAL})
INVERTER_PORT - TCP port (default: {INVERTER_PORT})
MODBUS_SLAVE_ID - Modbus slave ID (default: {MODBUS_SLAVE_ID})
SOCKET_TIMEOUT - Socket timeout in seconds (default: {SOCKET_TIMEOUT})
"""
)
parser.add_argument(
'--write',
nargs=2,
type=str, # Parse as strings for better validation
metavar=('REGISTER', 'VALUE'),
action='append',
dest='write_operations',
help='Write VALUE to REGISTER (can be used multiple times)'
)
parser.add_argument(
'--verbose',
action='store_true',
help='Enable verbose protocol output for debugging'
)
args = parser.parse_args()
# Validate and convert write operations
if args.write_operations:
validated_operations = []
for reg_str, val_str in args.write_operations:
try:
register_addr = validate_register_arg(reg_str)
value = validate_value_arg(val_str)
validated_operations.append((register_addr, value))
except ValueError as e:
print(f"ERROR: Invalid write argument: {e}")
sys.exit(1)
args.write_operations = validated_operations
print("=" * 50)
print("Solarman Register Reader/Writer")
print("=" * 50)
print()
# Pre-validate write operations before connecting
validate_write_operations(args.write_operations)
modbus = None
write_failures = []
try:
# Initialize connection
print(f"Connecting to {INVERTER_IP}:{INVERTER_PORT} (Serial: {INVERTER_SERIAL})...")
modbus = PySolarmanV5(
address=INVERTER_IP,
serial=INVERTER_SERIAL,
port=INVERTER_PORT,
mb_slave_id=MODBUS_SLAVE_ID,
socket_timeout=SOCKET_TIMEOUT,
verbose=args.verbose,
v5_error_correction=True
)
print("Connected successfully!")
# Validate connection with a test read
if REGISTERS:
try:
test_read = modbus.read_holding_registers(register_addr=REGISTERS[0], quantity=1)
if test_read and len(test_read) > 0:
print(f"Connection verified (read register {REGISTERS[0]})!\n")
else:
print(f"WARNING: Connection test to register {REGISTERS[0]} returned empty response\n")
except Exception as e:
print(f"WARNING: Connection test to register {REGISTERS[0]} failed: {e}")
print("This may indicate a connection issue or invalid register address.")
print("Continuing anyway...\n")
else:
print("Skipping connection test (no registers configured)\n")
# Perform write operations if requested
if args.write_operations:
for register_addr, value in args.write_operations:
success = write_register(modbus, register_addr, value)
if not success:
print(f"Write operation failed for register {register_addr}!")
write_failures.append(register_addr)
# Always read registers to show current values
print()
read_and_display_registers(modbus)
except Exception as e:
print(f"\nConnection error: {e}")
print("Please check your IP address, serial number, and network connection.")
sys.exit(1)
finally:
# Ensure disconnection
if modbus:
try:
modbus.disconnect()
print("\nDisconnected from inverter.")
except Exception as e:
# Log but don't raise - we're already cleaning up
print(f"\nWarning: Error during disconnect: {e}")
# Exit with error code if any write operations failed
if write_failures:
print(f"\nERROR: Failed to write to {len(write_failures)} register(s): {write_failures}")
sys.exit(1)
if __name__ == "__main__":
main()